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Abstract 

Following the industrial organization approach to banking, we investigate the effects 

of banking conduct on the investment cycle. To achieve this, we extend the second 

order accelerator (SOA) model in discrete time, introducing the interest rate on loans. 

To the extent that the banking sector is concerned, we consider two different types of 

banking conduct: a Cournot game where the banks make their decision on the 

quantities of loans and deposits simultaneously, and a Stackelberg game in which they 

decide over these amounts sequentially. In addition, we follow a simulation process to 

confirm the dynamic properties of our theoretical findings and examine the effects of 

monetary policy on capital over time. 
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1. Introduction 

The existence of adjustment costs in the transformation of the investment expenditure 

into capital has been usually used in the investment literature to describe the 

discrepancy between actual and desired capital (Hay & Morris, 1991). The second 

order accelerator mechanism (SOA) provides an explanation of the endogenous 

origination of the investment cycle, implying the presence of investment costs both in 

the changes of capital stock and in the changes of the level of investment. Also, it 

complies with the stylized facts (Hillinger & Sebold Bender, 1992; A’ Hearn & 

Woitek, 2001) that imply a major role for investment in the business cycle. The inertia 

of investment, that is all the factors that cause the time lag in the transformation of 

investment expenditure into capital, underlies behind the second order accelerator 

mechanism. Hillinger et al. (1992) establish a second order accelerator model for 

fixed investment and inventories in continuous time, considering the intertemporal 

minimization problem of adjustment costs by the individual firm. In the same manner, 

Hillinger (2005) presents two further derivations of SOA: the standard flexible 

accelerator and the inference of the observed fluctuations into dynamic equations. 

Hillinger & Weser (1988) and Weser (1992) study the aggregation problem in the 

business cycles theory in the SOA context. Along the same lines, Woitek (1995) and 

Barnett et al. (1996) examine the business cycle stylized facts empirically. Dalla & 

Varelas (2016) derive a SOA model for fixed investment in discrete time, using the 

flexible accelerator. In the same context, Dalla et al. (2016) extend the previous 

model, introducing an exogenous interest rate on loans as an unknown function of 

time. 

In this paper, we consider the implications of banking conduct on the investment 

cycle. For this reason, we extend the second order accelerator model in discrete time 

(Dalla & Varelas, 2016), introducing the interest rate on loans which is supposed to be 

endogenous. Relating the firms’ investment decision with the oligopolistic banking 

sector, we present two concepts of our model. In the first case, we consider a 

traditional Cournot game in which the banks make their decision on the quantities of 

loans and deposits simultaneously. In the second case, we assume a Stackelberg game 

in which they act strategically. Our purpose is the investigation of the effects of the 

banking conduct on the path of capital. The simulation process is put forward to 

verify our theoretical results and examine the effectiveness of monetary policy. 
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The implication of the industrial organization theory on the behavior of the 

banking firm constitutes the so-called industrial organization approach to banking 

(Freixas & Rochet, 2008; Van Hoose, 2010). The Monti-Klein (1971) model provides 

an analysis of the behavior of a monopolistic bank. Dalla & Varelas (2013) analyze 

the effect of monetary policy on the interest rate spread in a monopolistic banking 

sector. Freixas & Rochet (2008) establish a Cournot model with a finite number of 

banks and show that the optimal interest rates on loans and deposits increase after an 

increase in the interbank rate. Similarly, Toolsema & Schoonbeek (1999) examine the 

effects of monetary policy via the interbank rate in the case of asymmetry in the cost 

function (Cournot game) and a Stackelberg game. Stahl (1988) and Yanelle (1989) 

consider a Bertrand game in the banking industry. Salop (1979) presents a model of 

monopolistic competition in the banking sector, assuming product differentiation 

because of the location and the transport costs. Using the aforementioned model and 

assuming a three stage game, Toolsema (2001) considers different types of monetary 

policy rules. Varelas (2007) examines the effects of monetary policy via the interbank 

rate on the bank-clients’ behavior in a two-stage Cournot game with scope economies 

(Yamazaki & Miyamoto, 2004). In the same context, Dalla et al. (2014) analyze the 

effect of a change in the minimum reserve requirements on both the banking and the 

consumers’ behavior. 

The rest of the paper is organized as follows. Section 2 summarizes the three-

equation SOA model for fixed investment in discrete time (Dalla & Varelas, 2015). 

Section 3 presents the endogenous monetary term augmented SOA model while 

section 4 provides the solution. In sections 5 and 6, the calibration and the simulation 

processes are showed respectively. Section 7 examines the effects of monetary policy 

on the time path of capital. Section 8 concludes.  

   

2. The SOA Model in Discrete Time 

The second order accelerator mechanism (Hillinger et al., 1992; Hillinger, 2005) for 

fixed investment in discrete time (Dalla & Varelas, 2016) is derived by the following 

three-equation structural model: 

                                     *
1 1 , 0 1t t t tI I c I I c                                                   (1) 

                                            * *
1( ), 0t t tI b K K b                                                    (2) 
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                                                     1t t tI K K                                                              (3) 

where c: the speed of adjustment, b: a parameter of investors’ behavior, *
tI : the 

desired level of fixed investment, tI : the actual level of fixed investment, tK : the 

actual level of capital and *
tK : the desired level of capital. 

Equation (1) presents the partial adjustment mechanism for net investment. It 

shows that net investment is adjusted towards the desired level  *
tI gradually. The 

coefficient  0,1c  is the speed of adjustment. The closer to unity is the value of c, 

the faster is the adjustment of net investment in the present period. Conversely, as the 

value of c approaches zero, the adjustment becomes slower. The validity of this 

mechanism is related to the existence of adjustment costs, implying that the presence 

of adjustment costs provokes the partial adjustment of net investment  tI  towards its 

desired level.  

Relation (2) is a behavioral equation. It expresses the desired level of net 

investment  *
tI  as a positive function of the difference between the desired level of 

capital  *
tK  and the actual value of capital with a unity-period lag  1tK  . The 

introduction of the time pattern of the investment expenditure leads to a time lag in 

the transformation of this expenditure into capital. Under the assumption of a finite 

time path, the desired level of capital is assumed to be stable. This allows the notation 

of the desired level of capital with *K  for the rest of the analysis. Finally, equation 

(3) is the definition of net investment.  

Now, the combination of equations (1) to (3) yields the second order accelerator 

for fixed investment, which is expressed by the following second-order difference 

equation: 

                                    *
1 2( 1) 2 (1 )t t tK c b K c K cbK                                       (4) 

The general solution of equation (4) is given by the sum of the general solution of the 

corresponding homogeneous difference equation and a particular solution of (4). To 

begin with the former, it shows the deviation of capital from its steady-state. The 

functional form of this general solution depends on the sign of the discriminant of the 

characteristic equation. Taking into consideration that, the homogeneous equation, as 

this is obtained by (4), has the following mathematical form: 
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                                         1 2( 1) 2 (1 ) 0t t tK c b K c K                                       (5), 

the corresponding characteristic equation is: 

                                             2 ( 1) 2 (1 ) 0c b c                                              (6) 

and the crucial for this analysis value of the discriminant of the characteristic equation 

is: 

                                                   22 1 4c b cb                                                      (7). 

It is demonstrated that in the case of a negative discriminant, the homogeneous 

equation (5) generates trigonometric oscillations with period equal to 2 /  . The 

characteristic roots are conjugate complex numbers with modulus or absolute value 

(R) equal to 1 .R c   From the assumptions of the structural model concerning the 

value interval of c, it is deduced that the absolute value of the complex conjugate 

roots is less than unity. Therefore, capital converges towards its equilibrium, 

following a trigonometric oscillatory path with decreasing amplitude. The stability of 

this system can also be ensured by the satisfaction of a set of necessary and sufficient 

conditions (Gandolfo, 1996). The critical condition for the existence of dynamic 

stability is inequality (8): 

                                                        ( 2) 4c b                                                             (8) 

Regarding the particular solution of (4), it can be interpreted as the equilibrium level 

of capital. Applying the method of undetermined coefficients, we obtain that: 

                                                          *
tK K                                                               (9) 

Hence, the steady-state of capital is equal to its desired level. 

On the whole, the behavior of capital over time in the case of the trigonometric 

oscillatory movement is described by the following equation, which is also the 

general solution of this model: 

                                       *
1 2cos sint

tK R A t A t K                                     (10) 

where Α1, Α2 ℝ are arbitrary constants which can be derived using two initial 

conditions.  

  

3. Extension of the Model: The Endogenous Monetary Term 

In this section, we propose an augmented second order accelerator model for fixed 

investment in discrete time that incorporates an endogenous monetary term, the 

interest rate on loans. In the context of an oligopolistic banking sector with two banks, 
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1 and 2, that operate both on the markets for loans and deposits, we consider two 

different kinds of banking interaction. Under the assumption of finite time horizon, 

we begin with a traditional Cournot game where the banks compete over the volume 

of deposits and loans simultaneously. Then, we examine a Stackelberg game where 

the banks choose the volume of deposits and loans sequentially. It should be 

mentioned that in each period t the individual bank acts in the context of the 

corresponding game, without reacting in the past actions of the rival bank. Thus, in 

each period t the equilibrium interest rate on loans  *
Ltr  is the solution of the 

corresponding static game. Our structural model has as follows: 

                                          *
1 1 , 0 1t t t tI I c I I c                                      (11) 

                                     * *
1( ) , 0, 0t t t LtI b K K dr b d                                  (12) 

                                                   1t t tI K K                                                        (13) 

                                                 , 0t tY AK A                                                  (14) 

                                                    1 2t t tL L L                                                      (15) 

                                                 1 2t t tD D D                                                       (16) 

                       1 1 1 1( , ) , , 0 & '( ) 0Lt L t t t t L tr r L Y Y b L b r L                          (17) 

                   1 1( ) , , 0 & '( ) 0Dt D t t D tr r D D r D                                      (18) 

   ( , ) ( , ) ( ) ( , ), 1, 2it i it it L t t it it D t it i it itL D r L Y L r M r D D C L D i               (19) 

                              (1 ) , 1,2, (0,1)it it itM a D L i a                                 (20) 

                 ( , ) , 0, 0, 1,2it i it it it itC C L D L D i                                    (21) 

Relations (11)  (13) compose the second order accelerator model for fixed 

investment extended by the endogenous monetary term. As we can see, the difference 

from the initial model lies in the behavioral equation of investors, equation (12), 

where the interest rate on loans is introduced. The parameter d is negative, expressing 

the negative relation between the interest rate on loans and the desired level of net 
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investment. Moreover, under the assumption of the absence of substitution among the 

factors of production, the production function is given by equation (14), where A>0 

denotes the parameter of technology. 

Relations (15) to (21) determine the oligopolistic banking sector. In particular, 

equations (15) and (16) describe the total volumes of loans and deposits respectively, 

where itL and itD  denote the individual amounts of loans and deposits of each bank. 

In addition, equation (17) is the inverse demand function for loans. Furthermore, the 

inverse supply function for deposits is given by equation (18). The interest rate on 

deposits  Dtr  is a positive function of the total amount of deposits  tD . Equation 

(19) represents the profit function of the individual bank. The profit of the bank i is 

obtained from the difference between its total revenues and total costs. In particular, 

total revenues derive from the interest rate on loans  Ltr  and the exogenous interbank 

rate  r  if the net position of the bank  itM  is positive. On the other hand, total cost 

originates from the interest rate on deposits  Dtr  paid to depositors and the cost 

function  itC . Indeed, the exogenous interbank rate  r  is also included in total costs 

if the net position of the bank i  itM  is negative. 

Equation (20) presents the net position of bank i in the interbank market which is 

assumed to be linear. This function reflects the typical balance sheet constrain of the 

individual bank. The fraction of reserve requirements   0,1a  constitutes an 

exogenous instrument of monetary policy. Finally, the cost function of bank i is given 

by equation (21) and is assumed linear as well. The parameters 0   and 0 

denote the marginal cost of loans and deposits respectively. 

 

4. Solution of the Model 

From equations (11) to (13), we obtain the reduced form in the product market in 

terms of capital: 

                                     *
1 2( 1) 2 (1 )t t t LtK c b K c K cbK cdr                          (22) 

Moving now into the oligopolistic banking sector, the maximization problem of 

the individual bank can be stated as: 

       
,

max  , ,    ,
it it

i it it L t t it i t D t it i it it
L D

Π L D r L Y L r M r D D C L D                      (23) 
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In the context of the Cournot duopoly, each bank is profit maximizing given the 

volumes of deposits and loans of the other bank. Then, the interest rates on deposits 

and loans are determined in the corresponding market. Therefore, solving the above 

maximization problem and using the production function (14), we derive the 

equilibrium interest rate on loans as a function of capital: 

                                                   * 1 2
( )

3 3Lt t

A
r K r

                                               (24) 

On the other hand, in the case of the Stackelberg game the banks act strategically, 

deciding over the amounts of deposits and loans sequentially. More specifically, in the 

first stage, the “leader” bank (bank 1) chooses its own level of deposits and loans. In 

the second stage, the “follower” bank (bank 2) maximizes its profit function taking 

the leader bank’s volumes of deposits and loans as given. The interest rates on 

deposits and loans are then determined in the corresponding market. So, following the 

backward induction method to solve this game and using the production function (14), 

we get the equilibrium interest rate on loans in terms of capital: 

                                            * 1 3
( )

4 4Lt t

A
r K r

                                                      (25) 

After the substitution of relations (24) & (25) in (22), we derive the second order 

accelerator model for fixed investment in the respective case. Their functional forms 

are described by equations (26) & (27) respectively: 

                *1
1 2

2
1 ( 1) 2 (1 ) ( )

3 3t t t

Acd cd
K c b K c K cbK r

  
           

        (26) 

& 

             *1
1 2

3
1 ( 1) 2 (1 ) ( )

4 4t t t

Acd cd
K c b K c K cbK r

  
           

            (27) 

Both relations (26) & (27) are second order difference equations with constant 

coefficients. Following the same methodology with the initial model, firstly we 

determine the general solution of the homogeneous equations corresponding to 

equation (26) and (27), that is of: 

                            1
1 21 ( 1) 2 (1 ) 0

3 t t t

Acd
K c b K c K


 

         
                       (28) 

& 
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                                1
1 21 ( 1) 2 (1 ) 0

4 t t t

Acd
K c b K c K


 

         
                  (29). 

The relative characteristic equations are respectively: 

                                  211 ( 1) 2 (1 ) 0
3

Acd
c b c

           
                            (30) 

& 

                               21
21 ( 1) 2 (1 ) 0

4 t

Acd
c b c K

   
         

                       (31). 

The discriminant in each case has as follows: 

                                   2 1
1 ( 1) 2 4 1 1

3

Acd
c b c

         
                                 (32) 

& 

                                 2 1
2 ( 1) 2 4 1 1

4

Acd
c b c

         
                                   (33) 

In both cases of banking interaction, the second order accelerator mechanism can 

interpret the existence of the investment cycles if the value of the corresponding 

discriminant is negative. Therefore, under the assumption of the negative discriminant 

in the Cournot game, capital follows a trigonometric oscillatory path with period 

equal to 12 /  . The characteristic roots are conjugate complex numbers with 

modulus or absolute value equal to    1 13 1 / 3 0R c Acd      . If the latter’s 

value is less than unity, the amplitude of the trigonometric oscillations is decreasing 

leading to the capital’s convergence towards the equilibrium. The set of necessary and 

sufficient conditions for convergence to exist has as follows: 

                        

 

 

 

1
1

1

1
1

1

1

1
1

3
0, 3 0

3

3
0, 3 0

3

3 4 2
0, 3 0

3

c b Ad
Acd

Acd

c Ad
Acd

Acd

c b Acd
Acd

Acd
















  




  



       


                                 (34) 

Given the assumption of the negative discriminant, in the Stackelberg game the 

resulting movement of capital is similar, i.e. a trigonometric oscillatory path with 

period equal to 22 /   and a decreasing amplitude if and only if the modulus or 
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absolute value of the corresponding characteristic roots is less than unity. The latter is 

calculated equal to    2 14 1 / 4 0R c Acd      . In this case, the necessary and 

sufficient conditions are given by the following inequalities: 

                           

 

 

 

1
1

1

1
1

1

1

1
1

4
0, 4 0

4

4
0, 4 0

4

4 4 2
0, 4 0

4

c b Ad
Acd

Acd

c Ad
Acd

Acd

c b Acd
Acd

Acd
















  




  



       


                               (35) 

Now, we apply the method of undetermined coefficients to obtain the particular 

solutions of equations (26) and (27). These solutions are interpreted as the equilibrium 

level of capital in each case of banking interaction. For this reason, they should be 

positive. Their functional form has as follows2: 

                                  
  *

1
1

2 3
, 3 0

3t

d r bK
K b Ad

b Ad





 

  


                           (36) 

& 

                                  
  *

1
1

3 4
, 4 0

4t

d r bK
K b Ad

b Ad





 

  


                              (37) 

At this point we have to mention that we expect a lower equilibrium level of 

capital in the case of the Cournot game (relation (36)) rather than in the case of the 

Stackelberg game (relation (37)). This remark is a result of the intuition behind the 

comparison between the Cournot and the Stackelberg equilibria (Church & Ware, 

2000). In particular, the total equilibrium Cournot level of loans is lower than the 

Stackelberg one. Consequently, the inverse demand function for loans implies that the 

equilibrium interest rate on loans is higher in the case of the Cournot interaction. 

Taking into consideration that net investment is related inversely to the interest rate 

on loans, the steady-state of capital should be lower in the Cournot model rather than 

in Stackelberg model. 

To conclude, the behavior of capital over time in the cases of the Cournot and the 

Stackelberg game is described by the following equations respectively: 

                                                 
2 The restrictions 

1
3 0b Ad  & 

1
4 0b Ad  are satisfied in the case of convergence of capital 

towards its equilibrium due to the satisfaction of the corresponding set of stability conditions (34) & 
(35). 
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                   *

1 3 1 4 1 1
1

2 3
cos sin , 3 0

3
t

t

d r bK
K R A t A t b Ad

b Ad


  


 

    


     (38) 

& 

              *

2 5 2 6 2 1
1

3 4
cos sin , 4 0

4
t

t

d r bK
K R A t A t b Ad

b Ad


  


 

    


         (39) 

where Α3, Α4, A5, A6 ℝ are arbitrary constants which can be derived using two initial 

conditions.  

 

5. Calibration 

We begin our analysis with the presentation of the values assigned to our model 

parameters. We follow the method of Karpetis & Varelas (2012), assigning random 

values to the parameters and taking into consideration their value intervals in the 

theoretical model. To begin with the speed of adjustment  c , its value interval is the 

(0,1). We choose the value 0.4 that corresponds to a slow adjustment of net 

investment towards its desired level. In addition, the behavioral parameter b is set 

equal to 1. Given the desired level of capital, 1b   means that an increase in the 

present period’s capital leads to a proportional decrease in the desired level of net 

investment with one period lead ceteris paribus. Reflecting the negative relation 

between the interest rate on loans and the desired level of net investment, d is set 

equal to -0.3<0. Moreover, the parameter of technology A is set equal to 2 while the 

desired level of capital  *K is assumed equal to 15. 

Concerning the microeconomic parameters, we begin with the inverse demand 

function for loans. We set 1  equal to 1.5>0 to show that a marginal increase in 

national income results in an increase of the interest rate on loans by 1.5 units. 

Moreover, we assign the value 0.5 to the parameter b1, so the slope of the demand 

function for loans is equal to -0.5. The parameters of the inverse supply function for 

deposits, 1 &  , are determined to 30 and 1.2 respectively. Furthermore, the marginal 

costs of deposits    and loans    are assigned to 1.5 and 2. Turning now to the 

policy parameters, both the fraction of minimum reserve requirements (α) and the 

interbank rate (r) are equal to 0.1. The following table summarizes our calibration: 
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Macroeconomic Parameters & Parameters of Policy 

c b d Α *K  α r 

0.4 1 -0.3 2 15 0.1 0.1 

Microeconomic Parameters 

1  b1 1    φ θ  

1.5 0.5 30 1.2 1.5 2  

 

 

6. Simulations3 

In the present section, we attempt to confirm the dynamic properties of our analysis 

and compare the initial SOA with the banking behavior augmented SOA given the 

calibration discussed before. Firstly, we calculate the discriminant of the characteristic 

equation in each case. Substituting the numerical values of the parameters in 

equations (7), (32) and (33) respectively, we find that the corresponding discriminants 

are negative. Therefore, capital follows a trigonometric oscillatory path in the context 

of the initial SOA model, as well as, under the Cournot and Stackelberg interaction. In 

addition, the absolute value of the conjugate complex roots in each concept of SOA 

model (that is 1 20.774597, 0.731925 0.741929R R R     respectively) is less than 

unity, implying the stability of the corresponding equilibrium. As a result the relative 

stability conditions, i.e. (8), (34) and (35), are satisfied.  

Regarding the phase of the investment cycle, in the standard SOA we find that

sin 0.632455 cos 0.774596t t    . Similarly, in the cases of the Cournot and the 

Stackelberg interaction, we have 1 1sin 0.681385 cos 0.731925t t    and

2sin 0.670478t   2cos 0.741929t  . From the trigonometric tables we accept 

that all the aforementioned values approximate the trigonometric values of the 2π/9 

radians angle. Therefore, we infer approximately that the resulting movement of 

capital in all the examined cases is a periodic oscillation with period equal to 9 and 

decreasing amplitude.  

From equations (9), (36) and (37), the equilibrium level of capital in the cases of 

the initial SOA model, the Cournot competition and the Stackelberg game is deduced 

                                                 
3 The simulation results of this section were derived using the program Wolfram Mathematica 9.0. 

Table 1: Calibration  
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equal to 15, 11.2154 and 11.8592 respectively. It is obvious that the introduction of 

the monetary term in the SOA model for fixed investment leads to a lower steady-

state of capital. This is a matter of the negative relation between the investments and 

the interest rate on loans. What’s more, as it was expected, the steady-state of capital 

is lower in the case of the Cournot model rather than in the Stackelberg one. 

Assuming the initial conditions 0 18 20K K    and using relations (10), (38) & 

(39), we obtain the general solution of each concept of the SOA model:  

                      2 2
0.774597 ( 7)cos 18.3844sin 15

9 9

t

tK t t
       

                 (40) 

              2 2
0.731925 ( 3.2154)cos 22.5038sin 11.2154

9 9

t

tK t t
       

       (41) 

 &   

               2 2
0.741929 ( 3.8592)cos 21.6694sin 11.8592

9 9

t

tK t t
       

     (42) 

Equation (40)(42) describe the motion of capital in the cases of the initial SOA, the 

Cournot competition and the Stackelberg game respectively. Figure 1 depicts the 

paths of capital over time, as well as the steady-states in each case. 

 

 

 

 

 

 

 

Kt SOA 
K SOA 
Kt SOA Cournot 
K SOA Cournot 
Kt SOA Stackelberg 
K SOA Stackelberg 

Figure 1: The motion of capital over time 
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7. Monetary Policy Implications4 

In the monetary term augmented SOA model both the minimum reserve requirements 

and the interbank rate are determined exogenously by the Central Bank. Relations 

(24) and (25) imply that the interest rate on loans, both under the assumption of the 

Cournot interaction, as well as, when the Stackelberg interaction is the case, depends 

on the interbank rate. Therefore, monetary policy via the interbank rate affects the 

equilibrium interest rate on loans and consequently the path of capital over time. 

Taking into consideration that our model is deterministic which implies full 

information, perfect foresight and no uncertainty, we examine the effects of 

expansionary monetary policy via the interbank rate on the motion of capital.  

We assume that capital lies on the steady-state at the period 0t   either when the 

Cournot interaction is the case or when the Stackelberg game is considered. At period

1t  , the Central bank implements expansionary monetary policy, decreasing the 

interbank rate from 0.1 to 0.05. Figures 2 and 3 show the resulting transition path of 

capital for the Cournot and Stackelberg game respectively. It can be clearly seen that 

in both cases the decrease in the interbank rate leads to an increase in capital from its 

initial steady-state to a new higher steady-state over 19 periods. Hence, monetary 

policy via the interbank rate is effective.  

 

 

 

 

                                                 
4 The results of monetary policy were deduced using the Matlab R2008a software. 

Figure 2: Expansionary monetary policy - 
Cournot game 
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8. Conclusion 

In this paper, we extended the second order accelerator model for fixed investment in 

discrete time (Dalla & Varelas, 2016), incorporating the endogenous interest rate on 

loans in it. Following the industrial organization approach to banking and considering, 

on the one hand, a Cournot game of banking interaction and on the other a 

Stackelberg game, we investigated the effects of the introduction of this endogenous 

monetary term on the ability of the SOA mechanism to originate investment cycles. 

We found that our augmented model can interpret the existence of investment cycles 

in terms of capital as well. 

Moreover, we proceeded to a simulation process. Our results verified the dynamic 

properties of our theoretical system. The comparison between the standard three-

equation SOA model and the two versions of the endogenous monetary term 

augmented SOA model showed that in all the cases capital follows a trigonometric 

oscillatory path that converges towards the steady-state. The difference among the 

three concepts of SOA lies on the equilibrium level of capital. As it was expected, the 

introduction of the interest rate on loans leads to a lower steady-state of capital, with 

the latter being even lower in the case of Cournot interaction in the banking sector. 

Finally, we examined the implications of monetary policy on the path of capital over 

time. It was demonstrated that monetary policy via the interbank rate is effective in 

the case of the Cournot game as well as in the case of the Stackelberg one. 

 

 

Figure 3: Expansionary monetary policy –
Stackelberg game 
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